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ABSTRACT 
In this work we consider the use of Brinkman’s equation in describing viscous fluid flow through porous media, 

and its applicability in describing flow through layered porous media when permeability is low. While available 

formulations of viscous fluid flow over porous layers impose conditions of velocity and shear stress continuity at 

the interface between layers, the case of flow through layered media with low permeability requires a 

formulation that captures the low shear stress across layers. To this end, we consider a formulation of 

Brinkman’s equation based on Williams’ constitutive equations in order to take into account Brinkman’s 

effective viscosity and how it influences the flow characteristics across the porous layers, and we derive 

theoretical relationships for fluid and flow quantities in composite porous layers. 

Keywords – William’s constitutive equations, porous layers, Brinkman equation 

 

I. INTRODUCTION 

 

      Vafai and Thiagarajah [1] presented detailed 

analysis and classification of the following three 

fundamental problems and interface zones involving 

interface interactions in saturated porous media: 

(I) Interface region between a porous 

medium and a fluid; 

(II) Interface region between two different 

porous media;  

(III) Interface region between a porous 

medium and an impermeable medium. 

      Interest in these three interface zones stems out of 

a large number of natural and industrial applications, 

including flow of groundwater in earth layers, flow of 

oil in reservoirs into production wells, blood flow 

through lungs and other human tissues, porous ball 

bearing, lubrication mechanisms with porous lining, 

in addition to heat and mass transfer processes across 

porous layers and their industrial applications (cf. [2], 

[3], [4], [5], and the references therein). More 

recently, there has been an increasing interest in 

turbulent flow over porous layers due to the 

importance of this type flow in environmental 

problems and water quality (cf. [6], [7], [8], and the 

references therein). 

       Vafai and Thiagarajah [1] contend that the 

problem of the interface region between a porous 

medium and a fluid has received the most attention. 

In fact, the last five decades have witnessed a large 

number of published articles dealing with this 

problem. This was initiated by the introduction of 

Beavers and Joseph [2] condition, which envisaged a 

slip-flow condition at a porous interface to replace 

the prior practice in porous bearing lubrication of 

using a no-slip condition at the interface. Their [2] 

use of Darcy’s law as the governing equation of flow 

through the porous layer initiated a number of 

detailed investigations intended to: 

 Analyze and derive the matching conditions 

to be used at the interface between the fluid 

layer and the porous layer, to better handle 

permeability discontinuity there. 

 Validate and identify the most appropriate 

model that extends Darcy’s law, yet provide 

compatibility of order with the Navier-

Stokes equations that govern the flow in the 

fluid layer, and account for the presence of a 

thin boundary layer that inevitably develops 

in the porous layer (that is, in the sub-

domain with the slower flow) when a 

viscous fluid flows over a porous layer. 

 Account for the presence of a macroscopic, 

solid boundary that terminates a porous 

layer of finite depth, which gives rise to the 

need for porosity definition near the solid 

boundary in order to account for the 

channeling effect in the thin boundary layer 

near a solid wall.  

The above and many other investigations point to a 

general agreement that conditions at the interface 

must emphasize (1) velocity continuity and, (2) shear 

stress continuity, in order to facilitate the matching of 

flow in the channel with the flow through the porous 

layer.  
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       Many investigations point to the need for a non-

Darcy model to govern flow through the porous 

layer. In particular, there has been an increasing 

interest in the use of Brinkman’s equation, [9], as a 

viable and more appropriate model to govern the 

flow in the porous layer due to a number of short-

comings of Darcy’s law(cf. [3], [4], [5], [10], [11], 

[12], [13]). While Rudraiah [13] concluded that 

Brinkman’s equation is a more appropriate model 

when the porous layer is of finite depth, Parvazinia et 

al. [12] concluded that when Brinkman’s equation is 

used, three distinct flow regimes arise, depending on 

Darcy number (dimensionless permeability), namely: 

a free flow regime (for a Darcy number greater than 

unity); a Brinkman regime (for a Darcy number less 

than unity and greater than 610  ); and a Darcy regime 

(for a Darcy number less than 610  ). Their 

investigation [12] emphasized that “the Brinkman 

regime is a transition zone between the free and the 

Darcy flows”. 

      Related to flow through a channel underlain by a 

porous layer is the flow through layered media. This 

is the second interface zone identified and 

investigated by Vafai and Thiagarajah [1], and has 

been less studied. The use of a non-Darcy model in 

the study of flow through layered media was first 

considered by Vafai and Thiagarajah [1] who 

provided theoretical and experimental analysis to 

better understand the phenomenon and to validate 

some of the available results when a non-Darcy 

model is used. Vafai and Thiagarajah [1], Allan and 

Hamdan [14], and Ford and Hamdan [15], considered 

flow through two porous layers with the flow being 

governed by the same model or by two different 

models. 

       Many authors argue that Brinkman’s equation is 

valid in the thin viscous region near a solid boundary 

or near the interface between flow regimes. In 

regions away from a solid boundary and away from a 

momentum transfer interface, Darcy’s law is 

dominant and the regions fall into the Darcy 

regiments. This understanding is usually kept away 

from the problem formulation, and Darcy velocity is 

not taken into consideration. Instead, it has been 

customary to assume the same constant pressure 

gradient in each layer (or in the channel and the 

layer). In the current work we offer a modification to 

problem formulation by using the definition of the 

pressure gradient across each layer in terms of the 

Darcy velocity in the layer. This will shed further 

insights into the effects of permeability and Darcy 

velocity on the flow characteristics. Matching 

conditions on the velocity and shear stress at the 

interface between two layers are those developed by 

Williams [16] for flow over a porous layer.  

       This motivates the current work in which we 

consider flow through two porous layers that share an 

interfacial region, where the flow in each is governed 

by Brinkman’s equation. We base our analysis on 

William’s constitutive equations, [16], in order to 

provide a generalization and a formulation of the 

problem while taking into account Darcy’s seepage 

flow rate. To this end, we consider the flow through a 

porous layer underlain by another porous layer and 

assume a sharp interface between the two layers. The 

lower layer is terminated from below, and the upper 

layer is terminated from above by solid walls 

(macroscopic boundary). The flow through each layer 

is assumed to be governed by Brinkman’s equation 

with a different permeability for each layer, different 

flowing fluids, different layer thicknesses, and 

different viscosities. Conditions at the interface 

between layers are velocity continuity and shear 

stress continuity.  

       The objectives are to derive expressions for 

velocity and shear stress at the interface, to determine 

the velocity profiles in the layers; and to explore 

characteristics of the flow under these assumptions 

and for the above different characteristics. We derive 

relations characterizing the flow through two porous 

layers of differing permeabilities, differing 

thicknesses, differing fluids and flow conditions. An 

expression for the velocity at the interface is obtained 

and shows the dependence of this velocity on the 

Darcy numbers, porosities, base viscosities of the 

flowing fluids, the viscosity factors, and the 

thicknesses of the layers involved. A four-step 

procedure is outlined to obtain values for the 

parameters involved, and to completely determine the 

velocity at the interface.  

 

II. PROBLEM FORMULATION 
       Consider the flow of two viscous fluids through two porous structures of different porosities and 

permeability. Each flow is assumed to be governed by the equation of continuity and Brinkman’s equation, 

written here in a form based on the steady-state William’s constitutive equations, [16], namely: 

0 iiv


                                      …(1) 

0

2
22

 iii

i

ii
iiii pv

k
v 






                                                                                                     

… (2) 
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where i = 1, 2 refers to the ith porous medium, iv


 is the velocity vector field, i  is the porosity, ik  is the 

permeability, i is the fluid viscosity, and i  is a positive viscosity factor that is used to express the effective 

viscosity, 
*

i , of the fluid in the porous medium to the base fluid viscosity, namely through a relation of the 

form: 

iiii 
2*

 .                                                                                                                                                … (3)            

       For parallel flow through the composite porous layers in Fig. 1, equations (1) and (2) reduce to the 

following equations: 

dx

dp

k

u

dy

ud 1

11111

1

2

1
2

1


  ;  01  yL

                                                                                            
…(4) 

dx

dp

k

u

dy

ud 2

22222

2

2

2
2

1


  ; 20 Ly  .                                                                                       

 
… (5) 

       Equations (4) and (5) are to be solved for )(1 yu  and )(2 yu , under the assumption of constant pressure 

gradients. The driving pressure gradients are typically taken as equal, however we will assume they are 

different, but there is pressure continuity at the interface. The pressure gradients are defined in terms of Darcy 

velocity by assuming Darcy’s law to be valid in each layer.  We will thus formulate the problem at hand using 

the Darcy velocity, iQ . This is accomplished by casting Darcy’s velocity in the ith layer in the form:  

dx

dpk
Q i

iii

i
i


                                                                                                                                  …(6)

    

which gives 

i

i

iiii Q
kdx

dp 
 .                      …(7) 

 

 
Figure 1.  Representative Sketch of Flow through Two Porous Layers 
Using (7) in (4) and (5) we obtain, respectively 

1

1

11

1

2

1

2

k

Q

k

u

dy

ud



 ;   01  yL

                                                                                                          
…(8) 
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2

2

22

2

2

2
2

k

Q

k

u

dy

ud



 ;   20 Ly  .

                                                                                                      
…(9) 

Defining   

ii

i
k 


1

  and 

i

i
k

1


                                                                                                                  

…(10) 

then equations (8) and (9) take the following forms, respectively: 

  11112

1
2

Qu
dy

ud
   ;   01  yL

                                                                                                  
…(11) 

22222

2
2

Qu
dy

ud
   ;   20 Ly  .

                                                                                                    
…(12) 

Equations (11) and (12) are to be solved subject to the following conditions: 

a) No-slip velocity on macroscopic solid walls: 

 

0)( 11 Lu
                                                                                                                                                   

…(13) 

0)( 22 Lu
                                                                                                                                                     

…(14) 

b) Velocity continuity at the interface between the two porous layers (y = 0): 

 

)0()0( 2211 uu   .                                                                                                                                       …(15) 

c) Shear stress continuity at the interface between the two porous layers (y = 0):  

In each layer, the fluid and the solid receive equal shear forces from the fluid in the other layer. The 

force exerted by each layer is given by: 

  
dy

dui
iii 

2
, i=1, 2.                                                                                                                                    …(16)                              

 At the interface (y=0) these forces are equal. Thus, 

dy

du

dy

du 2
2

2

22
1

1

2

11    .                                                                                                                 …(17) 

 

III. SOLUTION TO THE GOVERNING EQUATIONS 
       

      General solution to equations (11) and (12) are given, respectively, by 

1

1

1
11111 )sinh()cosh( Qybyau




                                                                      …(18a) 

2

2

2
22222 )sinh()cosh( Qybyau




                                                                      …(18b) 

where ii ba , , for i=1, 2, are arbitrary constants. 

Using the no-slip conditions (13) and (14), we obtain, respectively: 

0)sinh()cosh( 1

1

1
111111  QLbLa




                                                                     …(19a) 

 .0)sinh()cosh( 2

2

2
222222  QLbLa




                                                                     …(19b) 

Defining  
2

i

i
i

L

k
Da  , the Darcy number in the ith layer, and using 

i

i
i




  , 

ii

i
k 


1

 , we set 
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1111

2

1
111

1




Dak

L
LA 

                                                                                                        

…(20a) 

and 

2222

2

2
222

1




Dak

L
LA  .                                                                                                 …(20b) 

Equations (19a) and (19b) can thus be written, respectively, as: 

0)sinh()cosh( 111111  QAbAa                                                                                                        …(21a) 

0)sinh()cosh( 222222  QAbAa  .                                                                                                 …(21b) 

     Upon using condition (15) in (18a) and (18b) at y = 0, we obtain: 

)()( 22221111 QaQa   .                                                                                                      …(22) 

Solving (22) for 2a , we get 

.)( 22111

2

1
2 QQaa 






                                                                                                                      

…(23) 

       Now, differentiating (18a) and (18b) with respect to y we obtain the following expressions for shear stress 

in layers 1 and 2, respectively: 

)cosh()sinh( 111111
1 ybya

dy

du
                                                                     …(24a) 

)cosh()sinh( 212212
2 ybya

dy

du
  .                                                               …(24b) 

Using condition (17) in (24a) and (24b) at y = 0, we obtain: 

222

2

22111

2

11    bb .                                                                                                      …(25)        

Solving (25) for 1b , we obtain: 

231 bAb                                                                                                                                                         …(26) 

where 

1

2

1

12

21
2

2

2

3







k

k

A  .                                                                                                                                   …(27) 

Equations (21a), (21b), (23), and (26) represent 4 equations in the 4 unknowns 2121 ,,, bbaa . Solution to these 

equations takes the following form: 

2134

725154
2

tanhtanh

secsec

AAAA

AhAAhAAA
b






                                                                                                     

…(28a) 

2134

732531543
1

tanhtanh

secsec

AAAA

AAhAAAhAAAA
b




                                                                                         …(28b) 

15

2134

725154
131 sec

tanhtanh

secsec
)tanh( hAA

AAAA

AhAAhAAA
AAa 












                                                     …(28c) 






















 15

2134

725154
13472 sec

tanhtanh

secsec
)tanh( hAA

AAAA

AhAAhAAA
AAAAa                                 …(28d) 

where 
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2

1
4




A

                                                                                                                                                      

…(29a) 

115 QA                                                                                                                                                       …(29b) 

226 QA                                                                                                                                                      …(29c) 

6547 AAAA  .                                                                                                                                         …(29d) 

Once values of the constants 2121 ,,, bbaa , above, are obtained and substituted in (18a) and (18b),  the velocity 

profile in each layer becomes completely determined. Using the values of the constants in (24a) and (24b) yields 

the shear stress across each layer. 

III.1. Velocity and Shear Stress at the Interface 

     At y = 0, equations (2.18a) and (2.18b) yield, respectively, the following values of velocity at the interface: 

1111 )0( Qau                                                                                                                                           …(31) 

2222 )0( Qau  .                                                                                                                                       …(32) 

Relationship between these velocities is given by equation (15). Either of equations (31) or (32) can be used to 

compute the velocity at the interface as follows. Letting iu be the velocity at the interface then, we set:  

)()()0( 511111111 AaQauui                                                                                             …(33a) 

or 

)()()0( 622222222 AaQauui   .                                                                                    …(33b) 

      Equations (33a) and (33b) show the dependence of the velocity at the interface on the Darcy numbers, Darcy 

velocities of the fluids, porosities, viscosities and viscosity factors of the saturating fluids, and the thickness of 

each layer. In addition, velocity distribution in each layer is dependent upon these same parameters. In 

particular, if 02 L , or equivalently the upper layer is of zero thickness, equation (18a) renders the following 

velocity profile through a single porous layer (the lower layer): 

















 1

sec

cosh

11

1

111
Lh

y
Qu




 .                                                                                                                …(34) 

Shear force exerted by each layer is given by equation (16), namely
dy

dui
iii 

2
, i=1, 2. At the interface, y = 

0, the shear forces are equal. Expressions for 
dy

dui
are given by equations 24 (a) and 24(b). At y = 0, layer1 

exerts the following shear force (S.F.) on layer 2:  

111

2

11..   bFS .                                                                                                                               ...(35) 

III.2. Relationships between the Darcy velocities in the layers 

      Assuming that the driving pressure gradient is the same constant in each of the layers, that is 

dx

dp

dx

dp 21 
                                                                                                                                                     

…(36) 

then, using equation (7), we get: 

2

2222

1

1111

k

Q

k

Q 
 .

         

                                                                                                                     …(37)                                     

If 21   then (37) reduces to: 

   .
2

222

1

111

k

Q

k

Q 


                                                                                                                                    

…(38) 

If 21    and 21   then (38) reduces to 



W.S. Almalki Int. Journal of Engineering Research and Applications                             www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 5) February 2016, pp.10-21  

 www.ijera.com                                                                                                                                16 | P a g e  

1

1

2

2

k

Q

k

Q
 .

                                                                                                                                                    

…(39)              

 Equation (39) gives a relationship between the Darcy velocities in two layers of differing permeability.  

III.3. Velocity and Shear Stress at the Interface: Results and Discussion 

      Determination of the velocity at the interface can be carried out according to the following steps: 

Step 1: Given the porosity of each layer, determine the viscosity factors, i , using equation (3). 

As a first approximation, we follow [5] and use Einstein’s formula to relate fluid viscosity and the effective 

viscosity: 

.)]1(
2

5
1[

*

iii  
     

… (40) 

Table 1, below, is produced using equations (3) and (40) and shows the viscosity factor for selected high values 

of porosity. It shows that the quadratic increase in the viscosity factor with a decrease in porosity. 

i  0.65 0.7 0.8 0.9 0.95 0.98 0.99 1 

i  4.437869822 3.571 2.34375 1.543 1.246 1.09329446 1.0458 1 

Table 1.  Viscosity Factor i  Based on Einstein’s Law for Viscosity of a Suspension 

Step 2: Determine the Darcy number, iDa , for each layer. This is accomplished as follows. 

For a given porosity and average solid grain diameter, id , for each layer, compute the permeability in each layer 

using the following relationship between permeability and porosity is given by [17]: 

2

23

)1(150 i

ii
i

d
k








                                                                                                                                      

… (41)                                         

Then, for each layer thickness, iL , compute 
2

i

i
i

L

k
Da  . Table 2 is produced using (41) for selected values  of 

porosity and grain diameter and demonstrates the dependence of permeability on these values. It shows that for 

a given porosity, the permeability decreases with decreasing grain diameter. For a given grain diameter, 

decrease in porosity results in decrease in permeability.  

i  id  ik  

0.98 
  

0.98 
  

0.65 
  

0.65 
  

0.6 
  

0.6 
  

0.5 
  

0.5 
  

Table 1  Permeability Values for Selected Porosity Values and Grain Diameter 

 

Tables 3 and 4 illustrate the Darcy numbers that correspond to a given permeability and layer thickness, and 

demonstrate the quadratic decrease of Darcy number with increasing layer thickness. It is clear that Darcy 

number increases with increasing permeability for a given layer thickness.  

 

               ik  iDa when 001.0iL   iDa when 01.0iL  iDa when 1.0iL  

 
15.68653333 0.1568653333 0.001568653333 

 
0.1568653333 0.001568653333 0.00001568653333 

 
0.01494557823 0.0001494557823 0.000001494557823 

 
0.0001494557823 0.000001494557823 1.494557823  
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0.009 9  9  

 
0.00009 9  9  

 
0.003333333333 3.333333333  3.333333333  

 
0.00003333333333 3.333333333  3.333333333  

 
0.001185185185 0.00001185185185 1.185185185  

 
0.00001185185185 1.185185185  1.185185185  

 
0.001062778823 0.00001062778823 1.062778823  

 
0.00001062778823 1.062778823  1.062778823  

 
0.0003673469388 0.000003673469388 3.673469388  

 
0.000003673469388 3.673469388  3.673469388  

 
0.0001851851852 0.000001851851852 1.851851852  

 
0.000001851851852 1.851851852  1.851851852  

 
0.000008230452675 8.230452675  8.230452675  

 
0.0000000823045676 8.230452675  8.230452675  

 

Table 3  Darcy Number for Different Permeability and Layer Thickness 

 

                    ik  iDa  when 5.0iL  iDa when 1iL  

 
0.00006274613332 

 

 
6.274613332  

 

 
5.978231292  

 

 
5.978231292  

 

 
3.6  

 

 
3.6  

 

 
1.333333333  

 

 
1.333333333  

 

 
4.740740740  

 

 
4.740740740  

 

 
4.251115292  

 

 
4.251115292  

 

 
1.469387755  

 

 
1.469387755  

 

 
7.407407408  

 

 
7.407407408  

 

 
3.292181070  

 

 
3.292181070  

 
Table 4   Darcy Number for Different Permeability and Layer Thickness 

Step 3: For a given constant driving pressure gradient,
dx

dpi , and given the fluid base viscosity, i , compute 

iQ using equation (7). 

The values of iQ are illustrated in Table 5 for the range of permeability considered and for different values of 

pressure gradient. For the sake of illustration, we consider the flowing fluid to be water at a temperature of 

C20  with a dynamic viscosity of ..10002.1 3 spa  (Pascal Second), density 
3/99829 mkg and 
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kinematic viscosity of ./10004.1 26 sm





 

Table 5 demonstrates the expected increase in flow 

rate, iQ , with increasing pressure gradient for a given permeability, and the increase in flow rate with 

increasing permeability for a given pressure gradient.

 
ik  i  i  

iQ when 210
dx

dpi  iQ when 110
dx

dpi  

 
0.98 1.093294460 1.461154137 0.1461154137 

 
0.98 1.093294460 0.01461154137 0.001461154137 

 
0.65 4.437869822 0.0005170792203 0.00005170792203 

 
0.65 4.437869822 0.000005170792203 5.170792203  

 
0.6 5.555555555 0.0002694610778 0.00002694610778 

 
0.6 5.555555555 0.000002694610778 2.694610778  

 
0.5 9 0.00007392622162 0.000007392622162 

 
0.5 9 7.392622162  7.392622162  

 
0.4 15.6250 0.00001892511274 0.000001892511274 

 
0.4 15.6250 1.892511274  1.892511274  

 
0.39 16.60092044 0.00001638243280 0.000001638243280 

 
0.39 16.60092044 1.638243280  1.638243280  

 
0.3 30.55555556 0.000003999422307 3.999422307  

 
0.3 30.55555556 3.999422307  3.999422307  

 
0.25 46 0.000001607091775 1.607091775  

 
0.25 46 1.607091775  1.607091775  

 
0.1 325 2.527392193  2.527392193  

 
0.1 325 2.527392193  2.527392193  

Table 5    Values of iQ for Different Pressure Gradients 

 
Step 4: Compute velocity at the interface using (33a) or (33b) using the data computed in Steps 1, 2, and 3. 

In order to understand the effects of the physical parameters on the velocity at the interface, we consider the 

effects of layer thickness, pressure gradient, and the effects of permeability, porosity and Darcy number of each 

layer. 

Effect of Layer Thickness 

In order to illustrate the effect of layer thickness, we consider water in both layers with    

 
3

21 10002.1   . We also fix the following parameters: 

98.021  ; 
3

21 10  dd ; 093294460.1221   ; 221 10
dx

dp

dx

dp
; 

5

21 10568653333.1  kk ; 461154137.121 QQ . 

We then take 5.01 L and vary 2L to take the values 2L = 0.001; 0.01; 0.1; 0.5; 1, and calculate the 

corresponding values of 2Da . Results of these calculations are given in Table 4. 

Upon using expressions (26)-(30), we produce the following Table of coefficients, and evaluate the velocity, 

iu , and shear force, S.F., at the interface using (33(a)) and (35), respectively. 

Table 6 demonstrates the increase in the velocity at the interface as the lower layer thickness increases relative 

to the upper layer thickness. The increase continues until the two layers are of the same thickness, and further 

increase in the lower layer thickness does not affect the velocity at the interface. 

The above increase in velocity at the interface is accompanied with a decrease of the absolute value of the shear 

force to the point where the two layers are of equal thickness. At this point, the shear force becomes negligibly 
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small and continues to be negligible for further increase in the lower layer thickness. The apparent vanishing of 

the shear force with increasing lower layer thickness could be attributed to the low permeability used in the 

current model, and is indicative of the need to consider higher values of permeability if the current model is 

used. For low permeability (low Darcy number), the model behaves like a Darcy model, characterized by the 

absence of shear force in the study of flow through two layers. 

2L  0.001 0.01 0.1 0.5 1 

iu  0.3358510411 1.425577450
 

1.565522289
 

1.565522289 1.565522289
 

S.F. -0.3187863 -0.036279 
-0.1322

1010  
0 0 

Table 6 Effect of Layer Thicknesses on Velocity and Shear Force at the Interface. 

Effect of Pressure Gradient 
In order to illustrate the effect of the pressure gradient on the velocity at the interface, we consider the following 

two cases: 

Case 1: Pressure gradients are equal in the two layers. 

Case 2: Pressure gradient in one layer is higher than the pressure gradient in the other layer. 

In both cases, we fix all other parameters by taking: 

5.021  LL  

3

21 10002.1    

98.021   

3

21 10  dd  

093294460.121    

5

21 10568653333.1  kk  

461154137.121 QQ  

3

21 10002.1    

5

21 10274613332.6  DaDa  

In Case 1 we take 221 10
dx

dp

dx

dp
, and in Case 2 we take 21 10

dx

dp
 and 12 10

dx

dp
. 

 221 10
dx

dp

dx

dp
 21 10

dx

dp
; 12 10

dx

dp
 

iu  1.565522289 0.8610372588 

Table 7  Effect of Pressure Gradients on Velocity at the Interface. 
Table 7 demonstrates a decrease in the velocity at the interface as the pressure in one layer is decreases. Clearly, 

the highest velocity occurs when the driving pressure gradients are equal in both layers. A decrease in the 

driving pressure gradient in one layer results in slower flow in that layer. This effect is transmitted across the 

interface (momentum transfer) and results in slowing down the flow in the other layer. Velocity continuity at the 

interface mandates that the flow is slower at the interface. 

Effect of Darcy Number 

In order to illustrate the effect of permeability, porosity and Darcy number, we consider the following cases: 

Case 1: 21 DaDa  and 21    

Case 2: 21 DaDa  and 21    

In each case, we fix the following parameters: 

121  LL  

221 10
dx

dp

dx

dp
. 

3

21 10002.1    

3

21 10  dd  
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       The combined effect of permeability, porosity, and layers thickness is illustrated by studying the effect of 

Darcy number. Table 8 emphasizes the dependence of the velocity at the interface on Darcy number.  Starting 

with equal values of Darcy number in each layer, velocity at the interface increases when the Darcy number is 

increased in one of the layers. This is due to the increase in flow velocity in the layer with higher permeability, 

thus increasing the momentum transfer across the interface. The end result is an increase in the velocity at the 

interface due to velocity continuity there. 

 98.0;65.0 21    

437869822.41   

093294460.12   

2030005170792.01 Q  

461154137.12 Q  
8

1 10494557823.1 Da  
5

2 10568653333.1 Da  

65.021   

437869822.421    

2030005170792.021  QQ  
8

21 10494557823.1  DaDa  

 
 

iu  0.03680295102 0.001491574674 

Table 8  Effect of Darcy Number on Velocity at the Interface. 

 

IV. CONCLUSION 
In this work, we considered the flow of two viscous fluids through a two-layer porous medium. Appropriate 

matching conditions at the interface between the layers have been implemented to obtain the velocity 

distribution through the layers and to obtain an expression for the velocity at the interface. Equations 33(a,b) 

give the dimensionless velocity at the interface between the two layers and demonstrates the dependence of this 

velocity on the thicknesses of the layers; Darcy numbers; porosities; base viscosities of the fluids; Darcy 

velocities; and the viscosity factors. A four-step procedure is developed in this work to compute the necessary 

parameters and to determine the velocity at the interface. Results obtained support the formulation of the 

Brinkman model in the form given by equation (2) in the sense that this form better approximates Darcy’s law 

when permeability is small. This work builds on, and provides details on the work reported in [18]. 
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